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Abstract. Assume that (Ω,Σ, µ) is a σ-finite measure space and p : Ω →
[1,∞] a variable exponent. In the case of a purely atomic measure, we

prove that the w-FPP for mappings of asymptotically nonexpansive type

in the Nakano space `p(k), where p(k) is a sequence in [1,∞], is equivalent
to several geometric properties of the space, as weak normal structure, the

w-FPP for nonexpansive mappings and the impossibility of containing iso-

metrically L1([0, 1]). In the case of an arbitrary σ-finite measure, we prove
that this characterization also holds for pointwise eventually nonexpansive

mappings. To determine if the w-FPP for nonexpansive mappings and

for mappings of asymptotically nonexpansive type are equivalent is a long
standing open question [19]. According to our results, this is the case, at

least, for pointwise eventually nonexpansive mappings in Lebesgue spaces

with variable exponents.

1. Introduction

In 1965, F. Browder [4] proved the existence of a fixed point for every nonex-

pansive mapping defined from a closed convex and bounded subset of a Hilbert

space X into itself. The same year, F. Browder [5] and D. Göhde [14] proved
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that the same is true whenever X is a uniformly convex Banach space and

W.A. Kirk [16] obtained a further extension for X being a reflexive Banach

space with normal structure. These results stated a bridge between the fixed

point theory and the geometrical theory of Banach spaces which can be consi-

dered as the foundation of the modern metric fixed point theory. This theory

has widely developed in the last 50 years, receiving a lot of very relevant con-

tributions and a very precise guidance from W.A. Kirk and K. Goebel (see, for

instance, [13], [20] and references therein). One of the main targets of this the-

ory is to find more and more general geometric properties of the space X which

still keep the validity of the Kirk’s Theorem. In some other cases, the authors

study the existence of a fixed point for some more general classes of mappings,

in particular, for mappings satisfying any type of asymptotic non-expansiveness.

The first results in this direction were given by W.A. Kirk and K. Goebel [12].

They introduce the class of asymptotically nonexpansive mappings, i.e. map-

pings which satisfy that d(Tnx, Tny) ≤ knd(x, y), {kn} being a sequence which

converges to 1. In [12], the authors proved that these mappings have a fixed

point when it is defined on a closed convex bounded subset of a uniformly con-

vex Banach spaces. Fifty years on, it is still unknown whether Kirk’s Theorem

for reflexive Banach space with normal structure can be extended to this class

of mappings. In 1974, W.A. Kirk [17] substantially weakened the asymptotic

non-expansiveness assumption on T by replacing it with a condition which may

hold even if none of the iterates of T is Lipschitzian, and he proved a fixed point

result for these mappings which extends the one in [12] for uniformly convex

spaces whenever T has a continuous iterated. Some further classes of mappings,

which have been considered in the literature about metric fixed point theory,

as pointwise eventually nonexpansive mappings and pointwise asymptotically

nonexpansive mappings, are particular cases of this class of mappings of asymp-

totically nonexpansive type. We will recall the definitions of these notions in

Section 2, where we will sketch the historical background about existence of

a fixed point for these classes of mappings under the geometrical assumptions

which are common in metric fixed point theory.

Section 3 is dedicated to recall the definition of the Lebesgue spaces with

variable exponents Lp(·)(Ω), where (Ω,Σ, µ) is a σ-finite measure. The class

of variable Lebesgue spaces arises as a generalization of classic Lebesgue spaces

Lp(Ω), when the constant exponent is replaced with a variable exponent function.

Variable Lebesgue spaces can be traced back in the literature to 1931 [27] and

they lie within the scope of the more general class of modular function spaces,

initially defined by H. Nakano [26] and studied by Orlicz and Musielak [25].

Since M. Ru̇žička discovered that they constitute a natural functional setting

for the mathematical model of electrorheological fluids [30], variable Lebesgue
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spaces have witnessed an explosive development in the analysis of their intrinsic

structure.

In Section 4, we state the main results of this paper. Our starting point is

a technical result (Lemma 4.1) that is taken from [31]. We want to remark the

meaning of this lemma. In 1975, K. Goebel [11] (see also [15]) proved the bizarre

behavior of any weakly compact convex T -invariant set C which is minimal under

these conditions when T is a nonexpansive mapping: nominally, lim
n
‖xn − x‖ =

diam(C) for any approximate fixed point sequence {xn} in C of T and every

x ∈ C. This result has proved to be very fruitful in metric fixed point theory,

providing an efficient tool to find several different geometrical conditions that

assure the existence of a fixed point for nonexpansive mappings (see, for instance,

the monograph [2]). It is still unknown if this result also holds for mappings of

asymptotically nonexpansive type. (In fact, it is unknown whether there exists

an approximate fixed point sequence for such mappings). However, the iterates of

a nonexpansive mapping satisfy another “bizarre” property in a minimal convex

weakly compact T -invariant set C: lim sup
n
‖Tnx−z‖ is a constant independent of

x, z ∈ C [13, Property 11.3]. In [31], it is proved that this property is still satisfied

by mappings of asymptotically nonexpansive type defined in an appropriated

minimal set, giving us a counterpart of Goebel–Karlovitz Lemma that can be

used to obtain some fixed point results for this class of mappings under several

geometrical assumptions [9], [21], [22], [24], [29], [30].

We use this lemma to prove the main results of this paper: for a purely

atomic σ-finite measure, we prove the existence of a fixed point for mappings

of asymptotically nonexpansive type defined in a convex weakly compact subset

of the Nakano space `p(k), where p : N → [1,∞] when lim sup
k

p(k) < ∞ and

p−1({+∞}) contains finitely many atoms, this condition being equivalent to weak

normal structure, the w-FPP for nonexpansive mapping and the impossibility of

containing isometrically L1([0, 1]). In the case of an arbitrary σ-finite measure,

we do not know if a similar result is true, but we can prove that it holds, at

least, for pointwise eventually nonexpansive mapping defined in a convex weakly

compact subset of the variable Lebesgue space Lp(·)(Ω).

We want to remark that most previous fixed point results for mappings of

asymptotically nonexpansive type derive from geometrical conditions (uniform

convexity, uniform normal structure, nearly uniform convexity) which imply re-

flexivity. However, our results hold for Nakano spaces which are not, in general

reflexive, as Remark 4.6 shows.

On the other hand, it is a long standing open question to determine if the exis-

tence of a fixed point for nonexpansive mappings and the existence for mappings

of asymptotically nonexpansive type become equivalent problems. According to
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our result, this is the case for pointwise eventually nonexpansive mappings in

Lebesgue spaces with variable exponents.

2. Mappings of asymptotically nonexpasive type

Definition 2.1. Let (X, d) be a metric space. A mapping T : X → X is called

nonexpansive if

d(Tx, Ty) ≤ d(x, y) for every x, y ∈ X.

It is well known that Browder’s Theorem [4] does not hold for arbitrary

Banach spaces. Thus, we can distinguish two classes of Banach spaces: those

for which Browder’s theorem holds and those for which it fails. We will fix the

notation:

Definition 2.2. Let X be a Banach space. A subset C of X is said to have the

fixed point property for nonexpansive mappings if every nonexpansive mapping

T : C → C has a fixed point. We say that X has the fixed point property (FPP)

for nonexpansive mappings if every bounded, closed, convex subset C has this

property and we say that X has the weak fixed point property (w-FPP) for

nonexpansive mappings if every convex weakly compact subset C satisfies the

fixed point property.

Analogously, if we replace the class of nonexpansive mappings by a more

general class F , we will say that X satisfies the FPP (w-FPP) for the class F .

Note that if the Banach space is reflexive, the FPP and the w-FPP are equivalent

for any class of mappings.

For many years, it was an open problem if every Banach space satisfies the

w-FPP for nonexpansive mappings. This problem was solved by D.E. Alspach [1]

in 1981, proving that the“baker” mapping defined in a weakly compact convex

subset of L1([0, 1]) is a fixed point free nonexpansive mapping. (Forty years on,

this is “essentially” the only known example of a weakly compact convex set

failing the FPP for nonexpansive mappings).

The following definition relaxes in a natural way the non-expansiveness as-

sumption:

Definition 2.3. Let X be a Banach space and C a nonempty subset of X.

A mapping T : C → C is said to be eventually nonexpansive if there exists

N ∈ N such that, for every n ≥ N ,

‖Tnx− Tny‖ ≤ ‖x− y‖, for every x, y ∈ X.

It should be noted that an eventually nonexpansive mapping does not need

to be nonexpansive, nor even continuous.
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Example 2.4. Let C = [0, 1] and T : [0, 1]→ [0, 1] defined by T (x) = 0 if x < 1

and T (1) = 1/2. It is clear that T is discontinuous at x = 1 but Tn ≡ 0 for

every n ≥ 2.

Looking at this example, we could guess that the fixed point theory for

eventually nonexpansive mappings should be quite different of the corresponding

theory for nonexpansive mappings. However, noting that the mappings Tn and

Tn+1 commute, the equivalence between both theories is a direct consequence of

the existence of a common fixed point for two nonexpansive commuting mappings

as proved in [6]. Thus, we have the following result:

Theorem 2.5 ([18]). Let X be a Banach space which satisfies the w-FPP. Then,

every eventually nonexpansive mapping T defined from a weakly compact convex

set C into C has a fixed point.

As mentioned in the introduction, W.A. Kirk [17] introduced in 1974 a fur-

ther asymptotic extension of non-expansiveness and proved the Browder’s The-

orem [5] in this setting. We recall his definition:

Definition 2.6. A mapping T : C → C is said to be of asymptotically nonex-

pansive type if for each x ∈ C,

lim sup
n→∞

{sup{‖Tnx− Tny‖ − ‖x− y‖ : y ∈ C}} ≤ 0.

The following fixed point result appeared in [17]:

Theorem 2.7. Let X be a uniformly convex Banach space, C a closed convex

bounded subset of X and T : C → C a mapping of asymptotically nonexpansive

type. Assume that an iterate TN of T is continuous. Then T has a fixed point.

The absence of a continuous iterate can yield to trivial examples of mappings

of asymptotically nonexpansive type which are fixed point free.

Example 2.8. Define T : [0, 1]→ [0, 1] by T (x) = x/2 if 0 < x ≤ 1 and T (0) = 1.

It is clear that T is fixed point free and for each x ∈ [0, 1] we have Tnx ≤ 21−n.

Thus, Tn(x) → 0 as n → ∞ for all x ∈ [0, 1] and lim
n
‖Tnx − Tny‖ = 0, for all

x, y ∈ [0, 1].

To avoid such a kind of trivial examples, we will consider in the following

that the mapping T satisfies a weaker continuity condition, nominally, for every

x ∈ C there exists an integer N = N(x) such that TN is continuous at x.

It must be noted that, as Example 3.3 in [9] shows, this condition does not imply

the existence of a continuous iterated of T . We will call ANET mappings the

mappings of asymptotically nonexpansive type which satisfy this weak continuity

assumption.
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Definition 2.9. A mapping T : C → C of asymptotically nonexpansive type

will be called an ANET mapping if for each x ∈ C, there exists N = N(x) such

that TN is continuous at x.

This condition is satisfied, for instance for the following classes of mappings,

placed between eventually nonexpansive mappings and mappings of asymptoti-

cally nonexpansive type.

Definition 2.10 ([21], see also [19]). A mapping T : C → C is said to be point-

wise eventually nonexpansive if for every x ∈ C there exists N(x) ∈ N such that,

if n ≥ N(x),

‖Tnx− Tny‖ ≤ ‖x− y‖ for all y ∈ C.

Definition 2.11 ([19]). A mapping T : C → C is said to be pointwise asymptot-

ically nonexpansive if for each x ∈ C there exist N(x) ∈ N and a real sequence

αn(x) such that, if n ≥ N(x),

‖Tnx− Tny‖ ≤ αn(x)‖x− y‖ for all y ∈ C,

where lim
n
αn(x) = 1.

The relevance of the continuity of an iterate at a point is clarified in the

following lemma:

Lemma 2.12. Let X be an arbitrary topological space, M a nonempty subset of

X and T a mapping from M into X. Assume that there exists x ∈M such that

lim
n
Tnx = x and there exists N ∈ N such that TN is continuous at x. Then,

Tx = x.

Proof. Since Tnx → x and TN is continuous at x, we have TNx = x. Thus

TnN+1x = Tx for all n ≥ 1, which implies that Tx = x. �

Having in mind this lemma and revising the proof of Theorem 2.7, it is easy

to check that the continuity assumption on TN can be removed if we assume

that T is an ANET mapping.

Although it is not yet known if the w-FPP for nonexpansive mappings is

equivalent to the w-FPP for ANET mappings, besides Theorem 2.7, some clas-

sical existence results of fixed points for nonexpansive mappings have been ex-

tended to ANET mappings. We will recall some of them and the geometrical

conditions that are used.

Definition 2.13. A Banach space X is said to have normal structure if

diam (A)/r(A) > 1 for any closed convex bounded set with diam (A) > 0, where

r(A) denotes the Chebyshev radius of A, i.e. r(A) = inf{sup{‖x− y‖ : y ∈ A} :

x ∈ A}. The space X is said to have weak normal structure if the same is sat-

isfied by any convex weakly compact subset of X. Finally, X is said to have
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uniform normal structure if

inf

{
diam (A)

r(A)
: A closed convex bounded with diam(A) > 0

}
> 1.

Theorem 2.14 ([22], [28], [29]). Every Banach space with uniform normal struc-

ture has the w-FPP for ANET mappings. In fact, since every space with uniform

normal structure is reflexive, it also satisfies the FPP for this class of mappings.

Definition 2.15. Let X be a Banach space and φ a measure of noncompactness

on X. The space X is said to be nearly uniformly convex if for every ε > 0 there

exists δ > 0 such that if A is a subset of the unit ball satisfying φ(A) > ε, then

d(0, A) ≤ 1− δ. Equivalently, ∆φ(ε) > 0 for every ε > 0 where

∆φ(ε) = sup{c > 0 : for any bounded convex A ⊂ B(0, 1)

with φ(A) ≥ ε, then d(0, A) ≤ (1− c)}.

Theorem 2.16 ([9]). Every nearly uniformly convex Banach space satisfies the

FPP for ANET mappings.

Nearly uniformly convex space are reflexive and have normal structure, but

they do not have, in general, uniform normal structure.

3. Variable Lebesgue spaces and Nakano spaces

Since Lebesgue spaces with variable exponents are a particular case of mo-

dular function spaces, we begin recalling some definitions and some properties

of these spaces.

Definition 3.1. Let X be an arbitrary vector space.

(a) A functional ρ : X → [0,∞] is called a convex modular if for x, y ∈ X :

(i) ρ(x) = 0 if and only if x = 0;

(ii) ρ(αx) = ρ(x) for every scalar α with |α| = 1;

(iii) ρ(αx+ βy) ≤ αρ(x) + βρ(y) if α+ β = 1 and α, β ≥ 0.

(b) A modular ρ defines a corresponding modular space, i.e. the vector space

Xρ given by {x ∈ X : ρ(x/λ) <∞ for some λ > 0}.

Given a vector space X with a convex modular ρ, the formula

‖x‖ = inf

{
α > 0 : ρ

(
x

α

)
≤ 1

}
for x ∈ Xρ,

defines a norm which is frequently called the Luxemburg norm and Xρ endowed

with this norm is a Banach space.

Assume that (Ω,Σ, µ) is a σ-finite measure space. Let p : Ω → [1,+∞]

be a measurable function and consider the vector space X of all measurable

functions g : Ω→ R. Define the modular

(3.1) ρ(g) :=

∫
Ωf

|g(t)|p(t) dµ+ ess sup
p−1({+∞})

|g(t)|,
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where Ωf := {t ∈ Ω : p(t) < +∞}.
The variable Lebesgue Space Lp(·)(Ω) is defined as the modular space en-

dowed with the Luxemburg norm associated to the modular ρ defined above.

It is well-known that Lp(·)(Ω) is a Banach function lattice whose geometry is

strongly attached to the behaviour of the exponent function p( · ). Note that

Lebesgue spaces Lp(Ω) endowed with the standard ‖ · ‖p norm (1 ≤ p ≤ +∞)

are particular examples of this construction just by considering the constant

function p(t) = p for all t ∈ Ω.

Following the usual notation, given a measurable set E ⊂ Ω, we define

p−(E) := ess inf
t∈E

p(t), p+(E) := ess sup
t∈E

p(t).

If E = Ω we just denote p− := p−(Ω) and p+ := p+(Ω).

A modular space Xρ is said to satisfy the ∆2-condition if there exists M > 0

such that ρ(2f) ≤ Mρ(f) for every f ∈ Xρ. It is easy to prove that Lp(·)(Ω)

satisfies the ∆2-condition if p+(Ωf ) < ∞ (see [7, Proposition 2.14]). Moreover,

in this case ρ(g) < +∞ for every g ∈ Lp(·)(Ω).

Definition 3.2. The growth function ωρ : [0,∞) → [0,∞) of a modular ρ is

defined as follows:

ωρ(t) := sup

{
ρ(tx)

ρ(x)
: 0 < ρ(x) <∞

}
for all t ≥ 0.

Lemma 3.3 ([10]). Let ρ be a convex modular satisfying the ∆2-condition. Then

the growth function ωρ has the following properties:

(a) ωρ(t) <∞ for every t ∈ [0,∞).

(b) ωρ(t) = 0 if and only if t = 0.

(c) ωρ : [0,∞) → [0,∞) is a convex, strictly increasing function. So, it is

continuous.

Remark 3.4. From the above lemma it follows that ρ(x) ≤ ωρ(‖x‖ρ) for every

x ∈ Xρ. Indeed, for every α > ‖x‖ρ,

ρ(x) = ρ

(
αx

α

)
≤ ωρ(α)ρ

(
x

α

)
≤ ωρ(α).

Letting α go to ‖x‖ρ and using the continuity of ωρ( · ) we obtain the wanted

inequality. As a consequence the modular is bounded on any norm-bounded

subset of Xρ.

The following properties relating the modular and the Luxemburg norm will

be used through this paper.

Lemma 3.5 ([8]). Let (Ω,Σ, µ) be a σ-finite measure, p : Ω → [1,+∞] be an

exponent function, such that p+(Ωf ) <∞. Then:

(a) For g ∈ Lp(·)(Ω) we have



ANET Mappings in Variable Lebesgue Spaces 31

(a1) If a ≥ 1, aρ(g) ≤ ρ(ag) ≤ ap+(Ωf )ρ(g).

(a2) If 0 < a < 1, ap+(Ωf )ρ(f) ≤ ρ(af) ≤ aρ(f).

(b) Assume that (gn) is a sequence in Lp(·)(Ω). Then:

(b1) lim
n
‖gn‖ = 1 if and only if lim

n
ρ(gn) = 1.

(b2) lim
n
‖gn‖ = 0 if and only if lim

n
ρ(gn) = 0.

Note that, from Lemma 3.5, it is clear that ρ(f) = 1 if and only if ‖f‖ = 1

under the assumption p+(Ωf ) < ∞. Thus, if ‖f‖ ≥ 1, from (a2) we have

1 = ρ(f/‖f‖) ≥ ρ(f)/‖f‖p+(Ωf ) which implies ρ(f) ≤ ‖f‖p+(Ωf ). Analogously

ρ(f) ≥ ‖f‖p+(Ωf ) if ‖f‖ ≤ 1.

The following result is the modular counterpart of the uniform convexity of

Lp( · )(Ω) whenever 1 < p− ≤ p+ <∞.

Lemma 3.6. Let (Ω,Σ, µ) be a σ-finite measure, p : Ω→ [1,+∞] be an exponent

function. Assume 1 < p− ≤ p+ < ∞. For any 1 < b < 21/p+ , 2 ≥ δ > 0 there

exists α > 0 depending on δ, p+ and p− such that, for any u, v ∈ Lp(·)(Ω) such

that ‖u‖ ≤ b, ‖v‖ ≤ b, ‖u− v‖ ≥ δ we have

ρ(u) + ρ(v)

2
≥ ρ
(
u+ v

2

)
+ α.

Proof. We adapt the proof of [23, Theorem 3.3]. Denote

εp− =
1

3

(
δ

2

)p+
and let m > 0 be the minimum of the function

(λ, p)→ 1

2
(|λ+ 1|p + |λ− 1|p)− |λ|p for (λ, p) ∈

[
− ε−1, ε−1

]
× [p−, p+].

Denote s = (u + v)/2 , t = (u − v)/2, S = {x ∈ Ω : |t(x)| ≤ ε|s(x)|}; T = {x ∈
Ω : |t(x)| > ε|s(x)|}. From Lemma 3.5 and the convexity of the modular we have

ρ(s) ≤ 2 and ρ(t) ≥ (δ/2)p+ . We have∫
S

|t(x)|p(x) dx ≤ εp−
∫
S

|s(x)|p(x) dx ≤ 2εp− .

Considering λ = |s(x)/t(x)| we have

1

2

(
|s(x) + t(x)|p(x) + |s(x)− t(x)|p(x)

)
≥
∣∣s(x)|p(x) +m|t(x)

∣∣p(x)

for every x ∈ T . Consequently,

1

2
(ρ(u) + ρ(v)) ≥ ρ

(
u+ v

2

)
+m

∫
T

|t(x)|p(x) dx

≥ ρ
(
u+ v

2

)
+mρ

(
u− v

2

)
− 2mεp−

≥ ρ
(
u+ v

2

)
+m

(
δ

2

)p+
− 2mεp− ≥ ρ

(
u+ v

2

)
+ α

where α = mεp− . �
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When the measure space (Ω, σ, µ) is purely atomic, the exponent function

p( · ) can be considered as a sequence (p(k))k ⊂ [1,+∞). The corresponding

space is denoted by `p(k) and it is usually known in the literature as a Nakano

space [26] (also a Musielak–Orlicz space [25]).

The following lemmas will be essential to prove our main results in Section 4.

From now on, for p : Ω → [1,∞], we will denote F1 = p−1(1), F∞ = p−1(∞),

F = F1 ∪ F∞ and Λγ = {t ∈ Ωf : p(t) ≥ γ almost everywhere}.

Lemma 3.7 ([8, Lemma 3.2]). Let (Ω,Σ, µ) be a σ-finite measure space and

assume that the exponent function p( · ) verifies 1 < p(t) <∞ almost everywhere.

Let u, v ∈ Lp(·)(Ω). Assume that there exists a ρ-bounded sequence (xn) in

Lp(·)(Ω) verifying

(3.2) lim
n

∫
Ω

(
|xn(t)− u(t)|p(t) + |xn(t)− v(t)|p(t)

− 2

∣∣∣∣xn(t)− u(t) + v(t)

2

∣∣∣∣p(t))dµ = 0.

then u = v almost everywhere.

We recall the definition of asymptotic radius and center that will be used in

the following:

Definition 3.8. Let {xn} be a bounded sequence in a metric space X and C a

subset of X. The asymptotic radius of {xn} with respect to C is defined by

ra(C, {xn}) = inf
{

lim sup
n

d(xn, x) : x ∈ C
}
.

The asymptotic center is defined by

AC(C, {xn}) =
{
x ∈ C : lim sup

n
d(xn, x) = ra(C, {xn})

}
.

It is clear that the asymptotic center of a bounded sequence can be empty.

However, the asymptotic center is convex weakly compact and nonempty as C is.

Lemma 3.9. Let (Ω,Σ, µ) be a σ-finite measure space and p : Ω→ [1,∞] a mea-

surable function such that p+(Ωf ) < ∞, F is purely atomic and F∞ contains

finitely many atoms at most. Let C be a weakly compact convex subset of

Lp(·)(Ω). Assume that {fn} is a sequence in C and K = AC(C, {fn}). Then, K

is a compact set and u · 1Ω\F = v · 1Ω\F ∈ K for every u, v ∈ K.

Proof. Since the cardinal of F∞ is finite we know that Lp(·)(F ) has the Schur

property (because it is isomorphic to `1). We assume, by multiplication, that

ra(C, {fn}) = 1 and select two arbitrary u, v ∈ K. We have that

1 = lim sup
n

∥∥∥∥fn − (u+ v

2

)∥∥∥∥ = lim sup
n
‖fn − u‖ = lim sup

n
‖fn − v‖.
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From the assumption p+(Ωf ) < +∞ and Lemma 3.5 we infer that

lim
n
ρ(fn − u) = lim

n
ρ(fn − v) = lim

n
ρ

(
fn −

u+ v

2

)
= 1

and consequently

(3.3) lim
n

[
ρ(fn − u) + ρ(fn − v)− 2ρ

(
fn −

u+ v

2

)]
= 0.

Note that we can write fn = gn + hn, where hn = fn · 1F and gn = fn · 1Ω\F . If

we denote by

ρ0(g) :=

∫
Ω\F
|g|p(t)dµ and ρF (g) := ρ(g)− ρ0(g) for g ∈ Lp(·)(Ω),

we have

ρ(fn − u) = ρ0(gn − u) + ρF (hn − u)

and a similar decomposition is obtained for ρ(fn − v) and ρ(fn − (u+ v)/2).

Condition (3.3) is now translated to A1 +A2 = 0, where

A1 := lim sup
n

[
ρF (hn − u) + ρF (hn − v)− 2ρF

(
hn −

u+ v

2

)]
,

A2 := lim
n

[
ρ0(gn − u) + ρ0(gn − v)− 2ρ0

(
gn −

u+ v

2

)]
.

By convexity of the modular we have that both A1, A2 ≥ 0, and so A1 = A2 = 0.

Consequently

(3.4) lim
n

∫
Ω\F

(
|gn(t)− u(t)|p(t) + |gn(t)− v(t)|p(t)

− 2

∣∣∣∣gn(t)− u(t) + v(t)

2

∣∣∣∣p(t)) dµ = 0.

Due to the assumptions, we have sup
n
ρ0(gn) < +∞. Furthermore, 1 < p(t) <

+∞ almost everywhere in Ω \F . Consequently, applying Lemma 3.7 for the set

Ω \ F , we deduce that u · 1Ω\F = v · 1Ω\F e.c.t. Ω \ F . Due to the arbitrariness

of the vectors u, v ∈ K, we can deduce that there exists a fixed f ∈ K such that

u·1Ω\F = f ·1Ω\F for any element u in K. Thus, K has the form {f ·1Ω\F +u·1F :

u ∈ K}. Since Lp(·)(F ) satisfies the Schur property and C is weakly compact we

have that K is a compact set. �

4. The w-FPP for mappings of asymptotically nonexpansive type

in variable Lebesgue spaces

Assume that C is a nonempty weakly compact convex subset of a Banach

space X and T : C → C is an arbitrary mapping. For each x ∈ C, let us denote

by ω(x) the weak cluster point set of the sequence {Tn(x)}. Denote by F the

collection formed by all closed convex nonempty subsets D of C which contain
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ω(x) for every x ∈ D. Let F be ordered by inclusion. Then, C ∈ F and, for every

chain {Di : I ∈ I} in F, we have that
⋂
i∈I

Di ∈ F. By Zorn’s lemma, we obtain

a minimal set K in F.

Lemma 4.1 ([31]). Let C be a weakly compact convex subset of a Banach space

X, T : C → C a mapping of asymptotically nonexpansive type and K a closed

convex nonempty subset of C such that the cluster point set ω(x) of the sequence

{Tnx} is contained in K for every x ∈ K and the set K is minimal under these

conditions. Then, there exists ρ ≥ 0 such that

lim sup
n
‖Tnx− y‖ = ρ for every x, y ∈ K.

The following lemma will play a key role in the proof of our main theorems.

Lemma 4.2 ([9, Lemma 4.5]). Let C be a weakly compact convex subset of a Ba-

nach space X, T : C → C a mapping of asymptotically nonexpansive type. As-

sume that there exists a closed convex nonempty subset H of C which satisfies

(a) For each x ∈ H, ω(x) ⊂ H.

(b) For each x ∈ H, every subsequence of {Tnx : n ∈ N} has a further

convergent subsequence.

Then there exists z ∈ H such that {Tnz} is norm convergent to z.

We can state now our first main theorem. We will use the following lemma:

Lemma 4.3. Let {xn = xn(k)} be a weakly null sequence in `p(k) where p : N→
(1,+∞) and lim sup

k
p(k) <∞. For γ > 1 denote Aγ = N \ Λγ . Then, for every

ε > 0, there exists γ > 1 such that lim sup
n

ρ
(
xn · 1Aγ

)
≤ ε.

Proof. We will assume, by contradiction, that for a positive ε and for every

γ > 1, lim sup
n

ρ
(
xn · 1Aγ

)
> ε. Since {xn} converges to 0 coordinate-wise, we

can construct an increasing sequence of positive integers {nk} and a sequence

{yk} in `p(k) such that ρ(xnk) > ε, ρ(yk) > ε, lim
k
‖xnk − yk‖ = 0, supp yk is

finite and supp yk < supp yk+1. It is clear that {yk} is a weakly null sequence.

By induction, we can construct a sequence γk < (k+ 1)/k, a subsequence {ynk}
of {yn} and three subsequences {mi}, {ak}, {bk} of the positive integers such

that a1 = 1, ak+1 > bk and

(1) ρ(ynk · 1Aγk ) > ε.

(2) supp
(
ynk · 1Aγk

)
= {mak < . . . < mbk}.

Indeed, choose an arbitrary γ1 < 2. Our assumption implies that there exists

n1 ∈ N such that ρ
(
yn1 · 1Aγ1

)
> ε. Let supp

(
yn1 · 1Aγ1

)
= {m1 < . . . < mb1}.

Assume that {ynk}, {γk}, {mi}, {ak} and {bk} have been constructed for k =

1, . . . , h. Choose γh+1 < (h+ 2)/(h+ 1). There exists nh+1 such that ρ
(
ynh+1

·
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1Aγh+1

)
> ε. Let supp

(
ynh+1

· 1Aγh+1

)
=
{
mah+1

< . . . < mbh+1

}
. We have

ah+1 > bh because supp ynh < supp ynh+1
. Note that the sequence p(mi)

converges to 1 because for every k ∈ N we have that p(mi) ∈ Aγk and so

p(mi) < (k + 1)/k except for finitely many i. Thus, zk =:
{
ynk · 1Aγk

}
is

a sequence in `p(mi) which satisfies ρ(zk) > ε. It is easy to check that {zk}
is weakly null. Indeed, since p+ < ∞, is well known [7, Theorem 2.80] that

the dual of `p(mi) is `q(mi), where q( · ) is the conjugated exponent of p( · ).
Choose u = u(mi) ∈ `q(mi) and denote v the sequence in `q(k) defined by

v(mi) = u(mi) and v(k) = 0 if k /∈ {mi : i ∈ N}. Then v(yn) → 0 which

implies that u(zk) = v(ynk) → 0. However, `p(mi) satifies the Schur Property

(see [3, Theorem 5.1 and Corollary 7.4]) which implies that ρ(zk) → 0 contra-

dicting ρ(zk) > ε. �

Theorem 4.4. Let p : N→ [1,+∞]. The following conditions are all equivalent :

(a) `p(k) has weak normal structure.

(b) `p(k) satisfies the w-FPP for nonexpansive mappings.

(c) `p(k) does not contain isometrically L1[0, 1].

(d) lim sup
k

p(k) <∞, and p−1({+∞}) contains finitely many atoms.

(e) `p(k) satisfies the w-FPP for mappings of asymptotically nonexpansive

type.

Proof. By [8, Theorem 3.3] conditions (a)–(d) are all equivalent. Since ob-

viously (e) implies (b) we only need to prove that (d) implies (e). Let K be

a minimal convex set which satisfies ω(x) ⊂ K for every x ∈ K. By normaliza-

tion we assume that lim sup ‖Tnx − y‖ = 1 for every x, y ∈ K. We will prove

that condition (b) in Lemma 4.2 is satisfied and so, the existence of a fixed

point for T will be a consequence of Lemma 2.12. Indeed, if {Tnkx} does not

have any convergent subsequence, we can assume that there exists d > 0 such

that d ≤ ‖Tnkx − Tnjx‖ for every k, j ∈ N and {Tnkx} is weakly convergent,

say to w ∈ K. From Lemma 4.3 aplied to the sequence {Tnkx − w}, there

exists γ > 1 such that
∥∥(Tnkx − Tnjx) · 1N\(F∪Λγ)

∥∥ < d/3. Since `p(·) · 1F sat-

isfies the Schur property, we can assume
∥∥(Tnkx − Tnjx) · 1F∥∥ < d/3 and so∥∥(Tnkx− Tnjx) · 1Λγ

∥∥ > d/3. Finally, we can apply Lemma 3.6, for δ = d/3, to

obtain α > 0 such that

ρ(x) + ρ(y)

2
≥ ρ
(
x+ y

2

)
+ α

for any x, y ∈ `p(·) · 1Λγ such that ‖x‖ < b, ‖y‖ ≤ b, ‖x − y‖ ≥ d/3. Since

p+(Nf ) < ∞, `p(·) · 1Nf satisfies the ∆2-condition and from Lemma 3.3 and

Remark 3.4, there exists β such that ω(1 + β) ≤ 1 + α/3 and so ρ(x) ≤ 1 + α/3

whenever ‖x‖ ≤ 1 +β. Since, lim sup
n
‖Tnx−x‖ = 1 we can choose n0 such that

‖Tnx−x‖ ≤ 1 +β/2 and sup
{
‖Tnx−Tnu‖−‖x−u‖ : u ∈ C

}
≤ β/2 for every
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n ≥ n0. Fixed n ≥ n0, we choose k0 large enough such that nk ≥ n + n0 for

k ≥ k0. Thus, for k ≥ k0 we have∥∥Tnx− Tnkx∥∥ ≤ ∥∥x− Tnk−nx∥∥+ β/2 ≤ 1 + β

which implies ρ(Tnx− Tnkx) ≤ 1 + α/3. Thus we have

2 ρ

(
Tnkx+ Tnk+1x

2
− Tnx

)
= 2 ρ

((
Tnkx+ Tnk+1x

2
− Tnx

)
· 1Λγ

)
+ 2ρ

((
Tnkx+ Tnk+1x

2
− Tnx

)
· 1N\Λγ

)
≤ ρ
((
Tnkx− Tnx

)
· 1Λγ ) + ρ

((
Tnk+1x− Tnx

)
· 1Λγ

)
− α

+ ρ
((
Tnkx− Tnx

)
· 1N\Λγ

)
+ ρ
((
Tnk+1x− Tnx

)
· 1N\Λγ

)
= ρ
(
Tnkx− Tnx

)
+ ρ
(
Tnk+1x− Tnx

)
− α < 2− α/3

which implies that there exists c < 1 (c = (1− α/6)1/p+(Nf )) such that∥∥∥∥Tnkx+ Tnk+1x

2
− Tnx

∥∥∥∥ < c

for every n ≥ n0. Taking lim inf as k →∞ we obtain
∥∥w − Tnx∥∥ ≤ c for every

n ≥ n0. Thus, we reach the contradiction lim sup
n
‖Tnx− w ‖ < 1. �

We do not know if the above result is true for an arbitrary σ-finite measure,

but it holds, al least, for pointwise eventually nonexpansive mappings:

Theorem 4.5. Let (Ω,Σ, µ) be a σ-finite measure space and p : Ω→ [1,+∞] be

a measurable function. The following conditions are all equivalent :

(a) Lp(·)(Ω) satisfies the weak normal structure.

(b) Lp(·)(Ω) satisfies the w-FPP for nonexpansive mappings.

(c) Lp(·)(Ω) does not contain isometrically L1[0, 1].

(d) p+(Ωf ) < +∞, p−1({+∞}) contains finitely many atoms at most and

every measurable atomless subset of p−1({1,+∞}) is negligible.

(e) Lp(·)(Ω) satisfies the w-FPP for pointwise eventually nonexpansive map-

pings.

Proof. We only need to prove that (d) implies (e) as in Theorem 4.5. By

Lemma 3.9, any sequence lying in a weakly compact convex set C has a com-

pact asymptotic center AC(C, {xn}). Thus, the result is a consequence of [9,

Theorem 5.6]. �

Remark 4.6. Usual assumptions to obtain a fixed point for ANET mappings

(uniform convexity, uniform normal structure, nearly uniform normal structure)

also imply reflexivity of X. However, in the case of the Nakano spaces `p(k),

p : N→ (1,∞), it is known that they are not reflexive if p− = lim inf
n

p(n) = 1.
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If the following conjecture were true, it would contain Theorems 4.4 and 4.5

as particular cases.

Conjecture 4.7. Let (Ω,Σ, µ) be a σ-finite measure space and p : Ω→ [1,+∞]

be a measurable function. The following conditions are all equivalent:

(a) Lp(·)(Ω) satisfies the weak normal structure.

(b) Lp(·)(Ω) satisfies the w-FPP for nonexpansive mappings.

(c) Lp(·)(Ω) does not contain isometrically L1[0, 1].

(d) p+(Ωf ) < +∞, F is purely atomic and F∞ contains finitely many atoms

at most.

(e) Lp(·)(Ω) satisfies the w-FPP for mappings of asymptotically nonexpan-

sive type.
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