Topological Methods in Nonlinear Analysis
Volume 63, No. 1, 2024, 23-38
DOI: 10.12775/TMNA.2023.044

© 2024 Juliusz Schauder Centre for Nonlinear Studies
Nicolaus Copernicus University in Torun

FIXED POINT FOR MAPPINGS
OF ASYMPTOTICALLY NONEXPANSIVE TYPE
IN LEBESGUE SPACES WITH VARIABLE EXPONENTS

TomAs DOMINGUEZ BENAVIDES

Dedicated to the memory of Professors K. Goebel and W.A. Kirk
thanking for their great contributions
in Banach Spaces Theory and Metric Fized Point Theory

ABSTRACT. Assume that (2, %, 1) is a o-finite measure space and p: Q —
[1,00] a variable exponent. In the case of a purely atomic measure, we
prove that the w-FPP for mappings of asymptotically nonexpansive type
in the Nakano space £7(K) where p(k) is a sequence in [1, 0], is equivalent
to several geometric properties of the space, as weak normal structure, the
w-FPP for nonexpansive mappings and the impossibility of containing iso-
metrically L1(]0,1]). In the case of an arbitrary o-finite measure, we prove
that this characterization also holds for pointwise eventually nonexpansive
mappings. To determine if the w-FPP for nonexpansive mappings and
for mappings of asymptotically nonexpansive type are equivalent is a long
standing open question [19]. According to our results, this is the case, at
least, for pointwise eventually nonexpansive mappings in Lebesgue spaces
with variable exponents.

1. Introduction

In 1965, F. Browder [4] proved the existence of a fixed point for every nonex-
pansive mapping defined from a closed convex and bounded subset of a Hilbert
space X into itself. The same year, F. Browder [5] and D. G&hde [14] proved
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that the same is true whenever X is a uniformly convex Banach space and
W.A. Kirk [16] obtained a further extension for X being a reflexive Banach
space with normal structure. These results stated a bridge between the fixed
point theory and the geometrical theory of Banach spaces which can be consi-
dered as the foundation of the modern metric fixed point theory. This theory
has widely developed in the last 50 years, receiving a lot of very relevant con-
tributions and a very precise guidance from W.A. Kirk and K. Goebel (see, for
instance, [13], [20] and references therein). One of the main targets of this the-
ory is to find more and more general geometric properties of the space X which
still keep the validity of the Kirk’s Theorem. In some other cases, the authors
study the existence of a fixed point for some more general classes of mappings,
in particular, for mappings satisfying any type of asymptotic non-expansiveness.
The first results in this direction were given by W.A. Kirk and K. Goebel [12].
They introduce the class of asymptotically nonerpansive mappings, i.e. map-
pings which satisfy that d(T"z, T"y) < k,d(x,y), {k,} being a sequence which
converges to 1. In [12], the authors proved that these mappings have a fixed
point when it is defined on a closed convex bounded subset of a uniformly con-
vex Banach spaces. Fifty years on, it is still unknown whether Kirk’s Theorem
for reflexive Banach space with normal structure can be extended to this class
of mappings. In 1974, W.A. Kirk [17] substantially weakened the asymptotic
non-expansiveness assumption on 7T by replacing it with a condition which may
hold even if none of the iterates of T' is Lipschitzian, and he proved a fixed point
result for these mappings which extends the one in [12] for uniformly convex
spaces whenever T' has a continuous iterated. Some further classes of mappings,
which have been considered in the literature about metric fixed point theory,
as pointwise eventually nonexpansive mappings and pointwise asymptotically
nonexpansive mappings, are particular cases of this class of mappings of asymp-
totically nonexpansive type. We will recall the definitions of these notions in
Section 2, where we will sketch the historical background about existence of
a fixed point for these classes of mappings under the geometrical assumptions
which are common in metric fixed point theory.

Section 3 is dedicated to recall the definition of the Lebesgue spaces with
variable exponents LP()(Q), where (Q,%, ) is a o-finite measure. The class
of variable Lebesgue spaces arises as a generalization of classic Lebesgue spaces
LP(£2), when the constant exponent is replaced with a variable exponent function.
Variable Lebesgue spaces can be traced back in the literature to 1931 [27] and
they lie within the scope of the more general class of modular function spaces,
initially defined by H. Nakano [26] and studied by Orlicz and Musielak [25].
Since M. Ruzicka discovered that they constitute a natural functional setting
for the mathematical model of electrorheological fluids [30], variable Lebesgue
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spaces have witnessed an explosive development in the analysis of their intrinsic
structure.

In Section 4, we state the main results of this paper. Our starting point is
a technical result (Lemma 4.1) that is taken from [31]. We want to remark the
meaning of this lemma. In 1975, K. Goebel [11] (see also [15]) proved the bizarre
behavior of any weakly compact convex T-invariant set C' which is minimal under
these conditions when 7' is a nonexpansive mapping: nominally, lign |zn — || =
diam(C) for any approximate fixed point sequence {x,} in C' of T and every
x € C. This result has proved to be very fruitful in metric fixed point theory,
providing an efficient tool to find several different geometrical conditions that
assure the existence of a fixed point for nonexpansive mappings (see, for instance,
the monograph [2]). It is still unknown if this result also holds for mappings of
asymptotically nonexpansive type. (In fact, it is unknown whether there exists
an approximate fixed point sequence for such mappings). However, the iterates of
a nonexpansive mapping satisfy another “bizarre” property in a minimal convex

weakly compact T-invariant set C: limsup | 72— z|| is a constant independent of

x,z € C'[13, Property 11.3]. In [31], it Tibs proved that this property is still satisfied
by mappings of asymptotically nonexpansive type defined in an appropriated
minimal set, giving us a counterpart of Goebel-Karlovitz Lemma that can be
used to obtain some fixed point results for this class of mappings under several
geometrical assumptions [9], [21], [22], [24], [29], [30].

We use this lemma to prove the main results of this paper: for a purely
atomic o-finite measure, we prove the existence of a fixed point for mappings
of asymptotically nonexpansive type defined in a convex weakly compact subset
of the Nakano space ¢P(*), where p: N — [1,00] when limsupp(k) < co and

k

p~1({+0o0}) contains finitely many atoms, this condition being equivalent to weak
normal structure, the w-FPP for nonexpansive mapping and the impossibility of
containing isometrically L!([0,1]). In the case of an arbitrary o-finite measure,
we do not know if a similar result is true, but we can prove that it holds, at
least, for pointwise eventually nonexpansive mapping defined in a convex weakly
compact subset of the variable Lebesgue space Lp(')(Q).

We want to remark that most previous fixed point results for mappings of
asymptotically nonexpansive type derive from geometrical conditions (uniform
convexity, uniform normal structure, nearly uniform convexity) which imply re-
flexivity. However, our results hold for Nakano spaces which are not, in general
reflexive, as Remark 4.6 shows.

On the other hand, it is a long standing open question to determine if the exis-
tence of a fixed point for nonexpansive mappings and the existence for mappings
of asymptotically nonexpansive type become equivalent problems. According to
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our result, this is the case for pointwise eventually nonexpansive mappings in
Lebesgue spaces with variable exponents.

2. Mappings of asymptotically nonexpasive type

DEFINITION 2.1. Let (X, d) be a metric space. A mapping T: X — X is called
nonexpansive if

d(Tz,Ty) < d(z,y) for every z,y € X.

It is well known that Browder’s Theorem [4] does not hold for arbitrary
Banach spaces. Thus, we can distinguish two classes of Banach spaces: those
for which Browder’s theorem holds and those for which it fails. We will fix the
notation:

DEFINITION 2.2. Let X be a Banach space. A subset C' of X is said to have the
fixed point property for nonexpansive mappings if every nonexpansive mapping
T: C — C has a fixed point. We say that X has the fized point property (FPP)
for nonexpansive mappings if every bounded, closed, convex subset C has this
property and we say that X has the weak fixed point property (w-FPP) for
nonexpansive mappings if every convex weakly compact subset C' satisfies the
fixed point property.

Analogously, if we replace the class of nonexpansive mappings by a more
general class F, we will say that X satisfies the FPP (w-FPP) for the class F.
Note that if the Banach space is reflexive, the FPP and the w-FPP are equivalent
for any class of mappings.

For many years, it was an open problem if every Banach space satisfies the
w-FPP for nonexpansive mappings. This problem was solved by D.E. Alspach [1]
in 1981, proving that the“baker” mapping defined in a weakly compact convex
subset of L*([0,1]) is a fixed point free nonexpansive mapping. (Forty years on,
this is “essentially” the only known example of a weakly compact convex set
failing the FPP for nonexpansive mappings).

The following definition relaxes in a natural way the non-expansiveness as-
sumption:

DEFINITION 2.3. Let X be a Banach space and C' a nonempty subset of X.
A mapping T: C — C is said to be eventually nonerpansive if there exists
N € N such that, for every n > N,

1Tz — T y|| < ||z —y|, forevery z,y € X.

It should be noted that an eventually nonexpansive mapping does not need
to be nonexpansive, nor even continuous.
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EXAMPLE 2.4. Let C' =[0,1] and T: [0,1] — [0, 1] defined by T'(z) =0if z < 1
and T'(1) = 1/2. It is clear that T is discontinuous at z = 1 but 7" = 0 for
every n > 2.

Looking at this example, we could guess that the fixed point theory for
eventually nonexpansive mappings should be quite different of the corresponding
theory for nonexpansive mappings. However, noting that the mappings 7™ and
T™+! commute, the equivalence between both theories is a direct consequence of
the existence of a common fixed point for two nonexpansive commuting mappings
as proved in [6]. Thus, we have the following result:

THEOREM 2.5 ([18]). Let X be a Banach space which satisfies the w-FPP. Then,
every eventually nonexpansive mapping T defined from a weakly compact convex
set C' into C' has a fized point.

As mentioned in the introduction, W.A. Kirk [17] introduced in 1974 a fur-
ther asymptotic extension of non-expansiveness and proved the Browder’s The-
orem [5] in this setting. We recall his definition:

DEFINITION 2.6. A mapping T': C' — C is said to be of asymptotically nonex-
pansive type if for each x € C,
lim sup{sup{||T"x — T"y|| — ||z —y| : y € C}} < 0.

n—oo

The following fixed point result appeared in [17]:

THEOREM 2.7. Let X be a uniformly convexr Banach space, C a closed convex
bounded subset of X and T: C — C a mapping of asymptotically nonexpansive
type. Assume that an iterate T of T is continuous. Then T has a fized point.

The absence of a continuous iterate can yield to trivial examples of mappings
of asymptotically nonexpansive type which are fixed point free.

EXAMPLE 2.8. Define T": [0,1] — [0,1] by T(z) = 2/2if 0 < 2 < 1and T'(0) = 1.
It is clear that T is fixed point free and for each x € [0, 1] we have Tz < 21-7.
Thus, T"(xz) — 0 as n — oo for all z € [0,1] and lign (|T"z — T™y|| = 0, for all
x,y € [0,1].

To avoid such a kind of trivial examples, we will consider in the following
that the mapping T satisfies a weaker continuity condition, nominally, for every
x € C there exists an integer N = N(z) such that 7% is continuous at x.
It must be noted that, as Example 3.3 in [9] shows, this condition does not imply
the existence of a continuous iterated of T. We will call ANET mappings the
mappings of asymptotically nonexpansive type which satisfy this weak continuity
assumption.
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DEFINITION 2.9. A mapping T: C — C of asymptotically nonexpansive type
will be called an ANET mapping if for each x € C, there exists N = N(x) such
that TV is continuous at z.

This condition is satisfied, for instance for the following classes of mappings,
placed between eventually nonexpansive mappings and mappings of asymptoti-
cally nonexpansive type.

DEFINITION 2.10 ([21], see also [19]). A mapping T': C' — C is said to be point-
wise eventually nonezpansive if for every x € C there exists N(x) € N such that,
if n > N(x),

|T"x =T y|| < [lz —y|| forally e C.

DEFINITION 2.11 ([19]). A mapping T: C' — C is said to be pointwise asymptot-
ically nonexpansive if for each x € C there exist N(x) € N and a real sequence
oy, (z) such that, if n > N(x),

Tz — T"y|| < an(x)||lz —y|| forallye C,
where lim o, (z) = 1.

The relevance of the continuity of an iterate at a point is clarified in the
following lemma;:

LEMMA 2.12. Let X be an arbitrary topological space, M a nonempty subset of
X and T a mapping from M into X. Assume that there exists x € M such that
imT"x = = and there exists N € N such that TN is continuous at x. Then,
Tz = x.

PRrROOF. Since Tz — = and TV is continuous at x, we have Tz = z. Thus
TN+1y = T for all n > 1, which implies that T2z = x. (]

Having in mind this lemma and revising the proof of Theorem 2.7, it is easy
to check that the continuity assumption on TV can be removed if we assume
that 7" is an ANET mapping.

Although it is not yet known if the w-FPP for nonexpansive mappings is
equivalent to the w-FPP for ANET mappings, besides Theorem 2.7, some clas-
sical existence results of fixed points for nonexpansive mappings have been ex-
tended to ANET mappings. We will recall some of them and the geometrical
conditions that are used.

DEFINITION 2.13. A Banach space X is said to have normal structure if
diam (A)/r(A) > 1 for any closed convex bounded set with diam (A) > 0, where
r(A) denotes the Chebyshev radius of A, i.e. r(A) = inf{sup{||z —y|| : y € 4} :
x € A}. The space X is said to have weak normal structure if the same is sat-
isfied by any convex weakly compact subset of X. Finally, X is said to have
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uniform normal structure if
di A
inf {131(11)) : A closed convex bounded with diam(A) > 0} > 1.
r
THEOREM 2.14 ([22], [28], [29]). Every Banach space with uniform normal struc-
ture has the w-FPP for ANET mappings. In fact, since every space with uniform
normal structure is reflexive, it also satisfies the FPP for this class of mappings.

DEFINITION 2.15. Let X be a Banach space and ¢ a measure of noncompactness
on X. The space X is said to be nearly uniformly convex if for every € > 0 there
exists & > 0 such that if A is a subset of the unit ball satisfying ¢(A) > ¢, then
d(0,A) <1 — 4. Equivalently, Ay(e) > 0 for every & > 0 where

Ay (e) = sup{c > 0 :for any bounded convex A C B(0,1)
with ¢(A) > e, then d(0,4) < (1 —¢)}.

THEOREM 2.16 ([9]). Every nearly uniformly convex Banach space satisfies the
FPP for ANET mappings.

Nearly uniformly convex space are reflexive and have normal structure, but
they do not have, in general, uniform normal structure.

3. Variable Lebesgue spaces and Nakano spaces

Since Lebesgue spaces with variable exponents are a particular case of mo-
dular function spaces, we begin recalling some definitions and some properties
of these spaces.

DEFINITION 3.1. Let X be an arbitrary vector space.
(a) A functional p : X — [0, 0] is called a convexr modular if for x,y € X:
(i) p(xz) =0 if and only if z = 0;
(ii) p(ax) = p(x) for every scalar a with |a| = 1;
(ili) p(az + By) < ap(x) + Bp(y) if a+ 5 =1and o, f > 0.
(b) A modular p defines a corresponding modular space, i.e. the vector space
X, given by {z € X : p(x/\) < oo for some A > 0}.

Given a vector space X with a convex modular p, the formula

||| = inf{a >0: ,0(2) < 1} for x € &,,

defines a norm which is frequently called the Luzemburg norm and X, endowed
with this norm is a Banach space.

Assume that (Q,%,p) is a o-finite measure space. Let p: Q@ — [1,+o0]
be a measurable function and consider the vector space X of all measurable
functions g: 2 — R. Define the modular

(3.1) plg) == / OO dp+ esssup g(0))
Q; =1 ({+00})
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where Qf := {t € Q: p(t) < +o0}.

The variable Lebesgue Space LP()(Q) is defined as the modular space en-
dowed with the Luxemburg norm associated to the modular p defined above.
It is well-known that LP()(Q) is a Banach function lattice whose geometry is
strongly attached to the behaviour of the exponent function p(-). Note that
Lebesgue spaces LP(2) endowed with the standard || - ||, norm (1 < p < +00)
are particular examples of this construction just by considering the constant
function p(t) = p for all ¢t € Q.

Following the usual notation, given a measurable set E C 2, we define

p—(E) = essinf p(¢), p+(E) = esssup p(t).
tekE tcE

If E=Q we just denote p_ :=p_(2) and p; := p4(Q).

A modular space X, is said to satisfy the Aj-condition if there exists M > 0
such that p(2f) < Mp(f) for every f € X,. It is easy to prove that LP()((Q)
satisfies the As-condition if p; () < oo (see [7, Proposition 2.14]). Moreover,
in this case p(g) < +oo for every g € LP()(Q).

DEFINITION 3.2. The growth function w,: [0,00) — [0,00) of a modular p is
defined as follows:

wp(t) :=sup {pp((t;)) (0 < p(x) < oo} for all t > 0.
LeMMA 3.3 ([10]). Let p be a convex modular satisfying the Ag-condition. Then
the growth function w, has the following properties:
(a) wy(t) < oo for everyt € [0,00).
(b) w,(t) =0 if and only if t = 0.
(€) wp: [0,00) = [0,00) is a convex, strictly increasing function. So, it is
continuous.

REMARK 3.4. From the above lemma it follows that p(z) < w,(||z||,) for every
z € X,. Indeed, for every a > ||z]|,,

) =p( %) < (L) < epfer

Letting o go to ||z||, and using the continuity of w,(-) we obtain the wanted
inequality. As a consequence the modular is bounded on any norm-bounded
subset of &,.

The following properties relating the modular and the Luxemburg norm will
be used through this paper.

LEMMA 3.5 ([8]). Let (Q,%,u) be a o-finite measure, p: Q@ — [1,4+o00] be an
exponent function, such that p4(Qy) < co. Then:

(a) For g € LPO)(Q) we have
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(al) Ifa>1, ap(g) < plag) < aP+(@1)p(g).

(a2) If0 <a <1, a?+©@)p(f) < p(af) < ap(f).
(b) Assume that (g,) is a sequence in LPC)(Q). Then:

(bl) lim ||gn|| =1 if and only if lim p(g,) = 1.

(b2) li;rln llgn|l = 0 if and only if li:lrlnp(gn) =0.

Note that, from Lemma 3.5, it is clear that p(f) = 1 if and only if || f|| =1
under the assumption pi(Q;) < oco. Thus, if ||f|| > 1, from (a2) we have
1= p(f/If1) = p(f)/IIf|IP+(+) which implies p(f) < |[f]["+*7). Analogously

p(f) = IflIP+ @0t || f]| < 1.
The following result is the modular counterpart of the uniform convexity of

LPC)(Q) whenever 1 < p_ < p, < oco.

LEMMA 3.6. Let (2,%, 1) be a o-finite measure, p : Q — [1,+00] be an exponent
function. Assume 1 < p_ < py < 0o. For any 1 <b < 2Y/P+ 2> 6> 0 there
exists a > 0 depending on 6,p* and p_ such that, for any u,v € Lp(')(Q) such
that |lul] < b, ||v]] < b, ||lu—v| > 6 we have

plw) o) o (utvy
2 2
PROOF. We adapt the proof of [23, Theorem 3.3]. Denote

1 6 P+
P— — | =
- =3()

and let m > 0 be the minimum of the function

1
) = 5 (A1 +[A=1F) = AP for (A,p) € [—e7h e x p-,p4].

Denote s = (u+v)/2 ,t =(u—0v)/2, S={z € Q:|t(x)| <els(z)|}; T ={z €
Q: |t(x)] > e|s(z)|}. From Lemma 3.5 and the convexity of the modular we have
p(s) <2 and p(t) > (6/2)P+. We have

/ [t(x)|P@) da < eP- / |s(z)|P®) do < 2eP-.
S S

Considering A = |s(x)/t(x)| we have
2 (Is(2) + @)@ +]s(z) — @)P) > |s(x) P + mlt(a) P
for every z € T. Consequently,

1

~ (olu) + p(0) p(“

5 P+
o) (257 o

where o« = meP-. O
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When the measure space (2,0, ) is purely atomic, the exponent function
p(-) can be considered as a sequence (p(k))r C [1,+00). The corresponding
space is denoted by (%) and it is usually known in the literature as a Nakano
space [26] (also a Musielak-Orlicz space [25]).

The following lemmas will be essential to prove our main results in Section 4.
From now on, for p:  — [1,00], we will denote F; = p~1(1), Fso = p~'(c0),
F=FUFy and A, = {t € Qy : p(t) > v almost everywhere}.

LEMMA 3.7 ([8, Lemma 3.2]). Let (Q,%,u) be a o-finite measure space and
assume that the exponent function p(-) verifies 1 < p(t) < oo almost everywhere.

Let u,v € LPO)(Q). Assume that there exists a p-bounded sequence () in
LPO)(Q) werifying

32t [ (lan) = uOP© + 1,0 - o0

u(t) + v(t)

p(t)
— 2@, (t) — )d,u:O.

then u = v almost everywhere.

We recall the definition of asymptotic radius and center that will be used in
the following:

DEFINITION 3.8. Let {z,,} be a bounded sequence in a metric space X and C a
subset of X. The asymptotic radius of {x,,} with respect to C' is defined by

re(C,{z,}) = inf { limsupd(x,,x):z € C’}.
The asymptotic center is defined by
AC(C, {z)) = {x € C : limsup d(n, ) = 74(C, {xn})}.

It is clear that the asymptotic center of a bounded sequence can be empty.
However, the asymptotic center is convex weakly compact and nonempty as C'is.

LEMMA 3.9. Let (2,3, 1) be a o-finite measure space and p: Q — [1,00] a mea-
surable function such that p4(Qy) < oo, F is purely atomic and Fu, contains
finitely many atoms at most. Let C be a weakly compact convex subset of
LPO)(Q). Assume that {f,} is a sequence in C and K = AC(C,{f,}). Then, K
is a compact set and u - lo\p = v - lo\p € K for every u,v € K.

PROOF. Since the cardinal of Fi, is finite we know that LP()(F) has the Schur
property (because it is isomorphic to ¢1). We assume, by multiplication, that
ro(C, {frn}) = 1 and select two arbitrary u,v € K. We have that

1 = limsup ’

u—+v . .
fn— < )Hzhmsup|fn—u|:hmsup||fn—v||.

2 n n
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From the assumption p; (Qf) < 400 and Lemma 3.5 we infer that

lim p(f, — u) = lim p(f,, — v) zlimp<fn—u;_v> =1

and consequently

(3.3) lim [p(fn —u)+p(fo —v) —2p (fn . ;r vﬂ =0.

Note that we can write f, = g, + hy, where hy, = f,, - 1p and g, = fo, - 1o\ p. If

we denote by
po(g) = / a0 and pr(s) = ple) = ole) forg < LO@),
F

we have
p(frn = 1) = po(gn — u) + pr(hn —u)
and a similar decomposition is obtained for p(f, —v) and p(f, — (u +v)/2).
Condition (3.3) is now translated to A; + As = 0, where

Aj := lim sup [pp(hn —u) 4 pp(h, —v) —2pF (hn _u —;— v)},

. u—+v
Aa = lim ol — )+ po(an — ) = 20 (5, - 5|

By convexity of the modular we have that both Ay, A5 > 0, and so A; = A; = 0.
Consequently

)t [ (10 = O + a0 o0
Q\F

u(t) +v(t)
2

-2

p(t)
gn(t) — > dp = 0.

Due to the assumptions, we have sup po(gn) < +oo. Furthermore, 1 < p(t) <
n

~+oo almost everywhere in Q \ F. Consequently, applying Lemma 3.7 for the set
Q\ F, we deduce that u-1o\p = v - 1g\r e.c.t. @\ F. Due to the arbitrariness
of the vectors u,v € K, we can deduce that there exists a fixed f € K such that
u-lonp = f-1g\p for any element v in K. Thus, K has the form {f’lQ\F+U'1F :
u € K}. Since LPO(F ) satisfies the Schur property and C' is weakly compact we
have that K is a compact set. O

4. The w-FPP for mappings of asymptotically nonexpansive type
in variable Lebesgue spaces

Assume that C is a nonempty weakly compact convex subset of a Banach
space X and T': C' — C is an arbitrary mapping. For each = € C| let us denote
by w(x) the weak cluster point set of the sequence {T"(x)}. Denote by § the
collection formed by all closed convex nonempty subsets D of C' which contain
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w(x) for every x € D. Let § be ordered by inclusion. Then, C' € § and, for every
chain {D; : I € I} in §, we have that (| D; € §. By Zorn’s lemma, we obtain
il

a minimal set K in §.

LEMMA 4.1 ([31]). Let C be a weakly compact convex subset of a Banach space
X, T:C — C a mapping of asymptotically nonerpansive type and K a closed
convex nonempty subset of C' such that the cluster point set w(x) of the sequence
{T"x} is contained in K for every x € K and the set K is minimal under these
conditions. Then, there exists p > 0 such that

limsup |T"x —y|| = p for every x,y € K.
n
The following lemma will play a key role in the proof of our main theorems.

LEMMA 4.2 (]9, Lemma 4.5]). Let C be a weakly compact convex subset of a Ba-
nach space X, T: C — C a mapping of asymptotically nonexpansive type. As-
sume that there exists a closed conver nonempty subset H of C which satisfies
(a) For eachx € H, w(x) C H.
(b) For each x € H, every subsequence of {T™x : n € N} has a further

convergent subsequence.

Then there exists z € H such that {T"z} is norm convergent to z.
We can state now our first main theorem. We will use the following lemma:

LEMMA 4.3. Let {2, = 2,(k)} be a weakly null sequence in (P*) where p: N —
(1,400) and limsup p(k) < co. For vy > 1 denote A, =N\ A,. Then, for every
k

e > 0, there exists v > 1 such that lim Supp(zn . 1Aw) <e.
n

ProoOF. We will assume, by contradiction, that for a positive € and for every
v > 1, limsup p(x, - 1a4,) > €. Since {x,} converges to 0 coordinate-wise, we
n

can construct an increasing sequence of positive integers {n;} and a sequence
{yr} in 7F) such that p(z,,) > €, p(yp) > &, lil£n||xnk —yil| = 0, suppyy, is
finite and suppyr < suppyr+1. It is clear that {y;} is a weakly null sequence.
By induction, we can construct a sequence vy, < (k+ 1)/k, a subsequence {y,, }
of {y,} and three subsequences {m;}, {ar}, {bx} of the positive integers such
that a; =1, ax+1 > by and

(1) p(yn, - 1a,,) > e

(2) supp(yn,, - 1‘4%) ={mg, <...<mp,}.
Indeed, choose an arbitrary ;3 < 2. Our assumption implies that there exists
n1 € N such that p(yn1 . 1,471) > ¢e. Let supp(yn1 . 1AW1) ={my <...<my}
Assume that {yn, }, {7}, {m:i}, {ax} and {bx} have been constructed for k =
1,...,h. Choose V41 < (h+2)/(h+1). There exists ny41 such that p(yn,, -
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1A%+1) > e. Let supp(yn,,, .1A’Yh+l) = {ma,,, < ... < my,,, }. We have
apt1 > by because suppyn, < suppym,.,- Note that the sequence p(m;)
converges to 1 because for every k& € N we have that p(m;) € A,, and so
p(m;) < (k + 1)/k except for finitely many i. Thus, 2z =: {yn, - 1A%} is
a sequence in (P(™) which satisfies p(z;) > e. It is easy to check that {z;}
is weakly null. Indeed, since p* < oo, is well known [7, Theorem 2.80] that
the dual of ¢P(m:) is ¢9(m:)  where q(-) is the conjugated exponent of p(-).
Choose u = u(m;) € £20™) and denote v the sequence in £9*) defined by
v(m;) = u(my;) and v(k) = 0 if k& ¢ {m; : i« € N}. Then v(y,) — 0 which
implies that u(z;,) = v(yn,) — 0. However, /7™ satifies the Schur Property
(see [3, Theorem 5.1 and Corollary 7.4]) which implies that p(z;) — 0 contra-
dicting p(zx) > e. O

THEOREM 4.4. Let p: N — [1,400]. The following conditions are all equivalent:

(a) %) has weak normal structure.
(b) £r*) satisfies the w-FPP for nonexpansive mappings.
(c

)

) P%) does not contain isometrically L'[0,1].

(d) lim supp(k) < 00, and p~*({+0o0}) contains finitely many atoms.
)

(e Ep(k) satisfies the w-FPP for mappings of asymptotically nonexpansive
type.

PRrROOF. By [8, Theorem 3.3] conditions (a)—(d) are all equivalent. Since ob-
viously (e) implies (b) we only need to prove that (d) implies (e). Let K be
a minimal convex set which satisfies w(z) C K for every z € K. By normaliza-
tion we assume that limsup ||T"z — y|| = 1 for every z,y € K. We will prove
that condition (b) in Lemma 4.2 is satisfied and so, the existence of a fixed
point for T will be a consequence of Lemma 2.12. Indeed, if {T"™*z} does not
have any convergent subsequence, we can assume that there exists d > 0 such
that d < ||T"*x — T™iz| for every k,j € N and {T™*z} is weakly convergent,
say to w € K. From Lemma 4.3 aplied to the sequence {T™*x — w}, there
exists v > 1 such that ||(T™z — T z) - 1y (rua,) || < d/3. Since C) g sat-
isfies the Schur property, we can assume H(T"ka: - T x) - 1FH < d/3 and so
|| (T"kx —Tm x) “1a, || > d/3. Finally, we can apply Lemma 3.6, for 6 = d/3, to

obtain a > 0 such that
p(z) ;rp(y) > p(x;y> ta

for any z,y € #0) - 1, such that [lz]| < b, |ly]| < b, ||z — y|| > d/3. Since
p+(Ny) < oo, £P0) - 1y, satisfies the Ao-condition and from Lemma 3.3 and
Remark 3.4, there exists 8 such that w(1+ 3) <14 «/3 and so p(z) <14 a/3
whenever ||z|| < 14 . Since, limsup ||7"x — x|| = 1 we can choose ng such that

[Tmz —z|| <1+ B/2 and sup {||T"z — T"u|| — ||z —ul| : w € C} < B/2 for every
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n > ng. Fixed n > ng, we choose kg large enough such that n, > n + ng for
k > kg. Thus, for k > kg we have
|Tre — Tz < ||z —T™ x|+ B8/2<1+8

which implies p(T"x — T™ ) < 1 + «/3. Thus we have

Tnk T"k+1 Tnk Tnk-+1
(I ) (P ) )

T+ T+
(T ) )

<p((T™x—T"x) - 1a,) + p((T™ 'z —T"z) - 15) —
4 p((T = ") - Ty, ) + (T2~ ") - Iy, )
:p(T"’“m — T"m) + p(T"’““x — T"m) —a<2-a/3
which implies that there exists ¢ < 1 (¢ = (1 — a/6)'/P+(MN1)) such that

me 4Ty

5 —T"x

<c

for every n > ng. Taking liminf as £k — oo we obtain Hw —T"x || < c for every
n > ng. Thus, we reach the contradiction limsup ||T"z — w || < 1. O
n

We do not know if the above result is true for an arbitrary o-finite measure,
but it holds, al least, for pointwise eventually nonexpansive mappings:

THEOREM 4.5. Let (2,3, u) be a o-finite measure space and p:  — [1,400] be
a measurable function. The following conditions are all equivalent:

(a) LPC)(Q) satisfies the weak normal structure.
LPO)(Q) satisfies the w-FPP for nonexpansive mappings.
LPO)(Q) does not contain isometrically L'[0,1].
p+(Qf) < 400, p~1({+00}) contains finitely many atoms at most and
every measurable atomless subset of p~1({1,+o00}) is negligible.
(e) LPU)(Q) satisfies the w-FPP for pointwise eventually nonexpansive map-

pings.

PrROOF. We only need to prove that (d) implies (e) as in Theorem 4.5. By
Lemma 3.9, any sequence lying in a weakly compact convex set C' has a com-
pact asymptotic center AC(C,{x,}). Thus, the result is a consequence of [9,
Theorem 5.6]. O

REMARK 4.6. Usual assumptions to obtain a fixed point for ANET mappings
(uniform convexity, uniform normal structure, nearly uniform normal structure)
also imply reflexivity of X. However, in the case of the Nakano spaces ¢P(),
p: N = (1,00), it is known that they are not reflexive if p_ = linhinfp(n) =1
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If the following conjecture were true, it would contain Theorems 4.4 and 4.5

as particular cases.

CONJECTURE 4.7. Let (2, X%, 1) be a o-finite measure space and p:  — [1, +00]
be a measurable function. The following conditions are all equivalent:

1

2

a) LP0)(Q) satisfies the weak normal structure.

¢) LPO)(Q) does not contain isometrically L'[0, 1].

(
(b) LPO)(Q) satisfies the w-FPP for nonexpansive mappings.
(d) p+(Q2f) < 400, F is purely atomic and F, contains finitely many atoms

at most.
(e) LPC)(Q) satisfies the w-FPP for mappings of asymptotically nonexpan-
sive type.
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